\qquad Date: \qquad

Design Criteria:

\qquad

1. Determine quantity of Presby Pipe required from Table A:

Residential: $70 \mathrm{ft} /$ bedroom x \qquad bedrooms = \qquad ft min.

Commercial: \qquad GPD $\div 2.14 \mathrm{GPD} / \mathrm{sf}=$ \qquad ft min. (normal strength wastewater)

Table A - AES Pipe Required

System Type	AES Pipe Requirement
Residential	70 linear feet per bedroom
Commercial or Large	2.14 gallons per linear foot

2. Calculate the minimum System Sand Bed Area (SSBA):

System Sand Bed Area (SSBA) from Table B = \qquad $\mathrm{ft}^{2} \mathrm{~min}$.

Table B - Minimum System Sand Bed Area (SSBA) Required (ft^{2})

Note: Table B AES loading rates reflect a 33% reduction in conventional bed sizing.
3. System Sand Bed Length (SSBL:

Choose System Sand Bed Length = \qquad $\mathrm{ft}-2 \mathrm{ft}=$ \qquad AES Row Length ft minimum
4. Calculate the number of serial sections required (skip if using Parallel distribution):

Design Daily Flow = \qquad bedrooms x 150 GPD/bedroom = \qquad GPD $\div 750$ GPD/section
$=$ \qquad sections minimum (round up to nearest whole number) $=$ \qquad sections minimum
5. Number of AES rows required:

Pipe required $($ from Step \#1) $=$ \qquad $\mathrm{ft} \div$ \qquad row length ft (not less than Step \#3 value)
$=$ \qquad rows (round up to nearest whole number) \div \qquad serial sections (from Step \#4)
$=$ \qquad rows (must be whole number, increase number of rows or change row length if necessary)
6. Find Pipe Layout Width (PLW):
(
\# of rows - 1) x \qquad ft center-to-center spacing $+1 \mathrm{ft}=$ \qquad ft

Note: the PLW is the distance from the outermost edge of the first to the outermost edge of the last row.
7. Calculate System Sand Bed Width (SSBW):
a) For beds sloping 10% or less -

SSBA (from Step \#2) $=$ \qquad $\mathrm{ft}^{2} \div$ \qquad SSBL (from Step \#3) = \qquad ft min.

If (7a) is less than (\qquad PLW $+2 \mathrm{ft}=$ \qquad ft) then the minimum SSBW $=\mathrm{PLW}+2 \mathrm{ft}=$ \qquad ft
Note: PLW + 2 is the amount of sand needed to cover all the rows plus a one ft border.
b) For beds sloping over 10\% -

SSBA (from Step \#2) $=$ \qquad $\mathrm{ft}^{2} \div$ \qquad SSBL $($ from Step \#3 $)=$ \qquad ft

If this is less than (
PLW + $5 \mathrm{ft}=$ \qquad ft) then the minimum SSBW $=\mathrm{PLW}+5 \mathrm{ft}=$ \qquad ft
Note: There will always be a System Sand extension for beds sloping over 10%.
8. System Sand extensions (SSE):
a) Level beds -

System Sand extension = \qquad SSBW ft - \qquad $(P L W+2 \mathrm{ft}) \div 2=$ \qquad ft min. each

Final System Sand bed width = \qquad SSE $\times 2=$ \qquad $+$ \qquad $(P L W+2 f t)=$ \qquad ft Note: the Presby pipes are centered in the middle of the sand bed area with a System Sand extension on each side. There will be no System Sand extensions if SSBW is equal to (PLW + 2 ft).
b) Sloping beds -

System Sand extension = \qquad SSBW ft - \qquad PLW + $2 \mathrm{ft}=$ ft min.
Note: the System Sand extension is always placed on down slope side of the field (pipes grouped at high side)

Notes:

\qquad

